

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã==
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli=

Approved for public release, distribution is unlimited.

Prepared for: Naval Postgraduate School, Monterey, California 93943

NPS-AM-09-022

bñÅÉêéí=Ñêçã=íÜÉ==

mêçÅÉÉÇáåÖë=
çÑ=íÜÉ=

páñíÜ=^ååì~ä=^Åèìáëáíáçå=

oÉëÉ~êÅÜ=póãéçëáìã=

HOW TO CHECK IF IT IS SAFE NOT TO RETEST A COMPONENT

Published: 22 April 2009

by

Valdis Berzins and Paul Dailey

6th Annual Acquisition Research Symposium
of the Naval Postgraduate School:

Volume I:
Defense Acquisition in Transition

May 13-14, 2009

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
APR 2009 2. REPORT TYPE

3. DATES COVERED
 00-00-2009 to 00-00-2009

4. TITLE AND SUBTITLE
How to Check If It Is Safe Not to Retest a Component

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School,Monterey,CA,93943

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This paper focuses on ways to reduce testing effort and costs associated with technology-advancement
upgrades to systems with open architectures. This situation is common in Navy and DoD contexts such as
submarine, aircraft carrier, and airframe systems, and accounts for a substantial fraction of the testing
effort. This paper describes methods for determining when testing of unmodified components can be
reduced or avoided, and it outlines some methods for choosing test cases efficiently to focus retesting where
it is needed, given information about past testing of the same component. Changes to the environment of a
system can affect its reliability, even if the behavior of the system remains unchanged. The new capabilities
added by a technology upgrade can interact with previously existing capabilities, changing the frequency of
their usage as well as the range of input values and, hence, changing their effect on overall system
reliability.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

53

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

^Åèìáëáíáçå=oÉëÉ~êÅÜ=mêçÖê~ã==
do^ar^qb=p`elli=lc=_rpfkbpp=C=mr_if`=mlif`v=
k^s^i=mlpqdo^ar^qb=p`elli=

The research presented at the symposium was supported by the Acquisition Chair of
the Graduate School of Business & Public Policy at the Naval Postgraduate School.

To request Defense Acquisition Research or to become a research sponsor,
please contact:

NPS Acquisition Research Program
Attn: James B. Greene, RADM, USN, (Ret)
Acquisition Chair
Graduate School of Business and Public Policy
Naval Postgraduate School
555 Dyer Road, Room 332
Monterey, CA 93943-5103
Tel: (831) 656-2092
Fax: (831) 656-2253
E-mail: jbgreene@nps.edu

Copies of the Acquisition Sponsored Research Reports may be printed from our
website www.acquisitionresearch.org

Conference Website:
www.researchsymposium.org

=
=
==================aÉÑÉåëÉ=~Åèìáëáíáçå=áå=íê~åëáíáçå======== - i -
=

=

Proceedings of the Annual Acquisition Research Program

The following article is taken as an excerpt from the proceedings of the annual

Acquisition Research Program. This annual event showcases the research projects

funded through the Acquisition Research Program at the Graduate School of Business

and Public Policy at the Naval Postgraduate School. Featuring keynote speakers,

plenary panels, multiple panel sessions, a student research poster show and social

events, the Annual Acquisition Research Symposium offers a candid environment

where high-ranking Department of Defense (DoD) officials, industry officials,

accomplished faculty and military students are encouraged to collaborate on finding

applicable solutions to the challenges facing acquisition policies and processes within

the DoD today. By jointly and publicly questioning the norms of industry and academia,

the resulting research benefits from myriad perspectives and collaborations which can

identify better solutions and practices in acquisition, contract, financial, logistics and

program management.

For further information regarding the Acquisition Research Program, electronic

copies of additional research, or to learn more about becoming a sponsor, please visit

our program website at:

www.acquistionresearch.org

For further information on or to register for the next Acquisition Research

Symposium during the third week of May, please visit our conference website at:

www.researchsymposium.org

=
=
==================aÉÑÉåëÉ=~Åèìáëáíáçå=áå=íê~åëáíáçå======== - ii -
=

=

THIS PAGE INTENTIONALLY LEFT BLANK

=
=
==================aÉÑÉåëÉ=~Åèìáëáíáçå=áå=íê~åëáíáçå======== - 189 -
=

=

How to Check If It Is Safe Not to Retest a Component

Presenter: Valdis Berzins is a Professor of Computer Science at the Naval Postgraduate School.
His research interests include software engineering, software architecture, computer-aided design,
and software evolution. His work includes software testing, reuse, automatic software generation,
architecture, requirements, prototyping, re-engineering, specification languages, and engineering
databases. Berzins received BS, MS, EE, and PhD degrees from MIT and has been on the faculty at
the University of Texas and the University of Minnesota. He has developed several specification
languages, software tools for computer-aided software design, and fundamental theory of software
merging.

Valdis Berzins
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943
E-mail: berzins@nps.edu

Author: Paul Dailey is a systems engineer for the Office of Naval Intelligence in Washington, DC. He
has also recently worked as a systems engineer for the Naval Surface Warfare Center Port Hueneme
Division Detachment, Louisville, and has been working for the Department of the Navy for close to
seven years. He holds an MS in Systems Engineering from the Naval Postgraduate School and a BS
in Electrical and Computer Engineering from the University of Louisville. He is currently pursuing a
PhD in Software Engineering from the Naval Postgraduate School, focusing his research on the
automated testing of software.

Paul Dailey
Software Engineering PhD student
Naval Postgraduate School
Monterey, CA 93943
E-mail: prdailey@nps.edu

Abstract1
This paper focuses on ways to reduce testing effort and costs associated with

technology-advancement upgrades to systems with open architectures. This situation is
common in Navy and DoD contexts such as submarine, aircraft carrier, and airframe
systems, and accounts for a substantial fraction of the testing effort. This paper describes
methods for determining when testing of unmodified components can be reduced or
avoided, and it outlines some methods for choosing test cases efficiently to focus retesting
where it is needed, given information about past testing of the same component. Changes to
the environment of a system can affect its reliability, even if the behavior of the system
remains unchanged. The new capabilities added by a technology upgrade can interact with
previously existing capabilities, changing the frequency of their usage as well as the range
of input values and, hence, changing their effect on overall system reliability.

Keywords: open architecture, reducing regression testing, automated testing,
statistical testing, dependency analysis, reuse, technology upgrades.

1 This research was supported in part by ARO under project P-45614-CI and, in part, by NAVSEA
under project number 09WX11455.

=
=
==================aÉÑÉåëÉ=~Åèìáëáíáçå=áå=íê~åëáíáçå======== - 190 -
=

=

Introduction
Current US Navy combat and weapon system test procedures require an integration

test event with every change to the software or system configuration to certify that the
software-intensive system-of-systems is stable and functional. As more systems are moving
to a modular open architecture, software configurations are changing with increased
frequency, requiring more testing, which is expensive and time-consuming.

The Navy’s open architecture framework is intended to promote reuse and reduce
costs. Ongoing research at the Naval Postgraduate School is developing improvements to
the test and evaluation procedures that can contribute to these goals. Test and evaluation
accounts for a large part of system-development cost, but the impact of open architecture
ideas on this part of the process has been relatively modest so far. The purpose of this effort
is to provide sound engineering approaches to better realize the potential benefits of Navy
open architectures and to provide concrete means that support economical acquisition and
effective sustainment of such systems.

The specific goals of this research are to enable: (1) identification of specific testing
and checking procedures that do not need to be repeated after given changes to a system,
(2) limiting the scope and reducing the cost of retesting when the latter is necessary, and (3)
a single analysis to provide assurance that all possible configurations that can be generated
in a model-driven architecture will satisfy given dependability requirements. This paper
reports some results that address the first two of the goals listed above. A roadmap and
technical approach for reaching the third goal are outlined in Berzins, Rodriquez, and
Wessman (2007).

Technology upgrades are typically performed on a two-year cycle. They often involve
migration to the best hardware and operating system version available at the time, where
“best” implies a balanced trade-off between high performance and reliable operation.
Typically, only a small fraction of the application code has been changed. However, current
certification practices require all of the code to be retested prior to deployment, whether it
has been modified or not. Retesting of an unchanged module can be avoided only if we can
establish that it has not been adversely impacted by the change. Preliminary results on how
to do that have been reported by Berzins (2008). In this paper, we further explore ways to
determine whether it is safe not to retest an unchanged component under the assumption
that the load characteristics of the component have not changed. We also address the
problem of how to most effectively focus retesting for unchanged components in cases
where the requirements and behavior of the component have not changed but the load
characteristics have changed.

The latter situation has great importance for assuring reliability of reusable
components. Many past cases of well-publicized software failures involved reuse of software
components in new environments that had different characteristics than the contexts for
which the components were originally designed. These components failed in their new
environments despite the fact that they were well-tested and found to be reliable in the field
under previous deployment conditions. Examples include the Patriot missile failure
(Marshall, 1992) and the failure of the European Ariane 5 rocket (Jézéquel & Meyer, 1997,
January).

The rest of this paper is organized as follows: Section 2 describes methods for
deciding when re-testing of unchanged components can be safely reduced or eliminated

=
=
==================aÉÑÉåëÉ=~Åèìáëáíáçå=áå=íê~åëáíáçå======== - 191 -
=

=

entirely; Section 3 presents methods for efficiently retesting reusable components for use in
deployment environments with workloads that are different from previous deployments;
Section 4 identifies some relevant previous work; and Section 5 presents our conclusions.

Deciding When Retesting Can Be Avoided
Our previous work identified two types of analysis that could enable safe avoidance

of retesting unchanged components under certain conditions: program slicing and
invariance testing (Berzins, 2008). These techniques are applicable in cases in which the
requirements, code, expected workload and available resources of the component are
unchanged. This section briefly reviews the approach and then examines in more detail
what additional analysis needs to be done to safely reuse such components in the next
release without retesting them.

Program slicing is a kind of dependency analysis that is based on the source code.
Slicing algorithms are efficient enough to be used on practical, large-scale programs. If two
different versions of a program have the same slice with respect to a service it provides,
then that service has the same functional behavior in both versions, and retesting can be
avoided if having the same functional behavior is sufficient to establish the reliability of the
component (Gallagher, 1991, August).

Invariance testing is a kind of statistical, automated testing that is applicable to
components whose code has changed but whose specifications and requirements remain
the same. The purpose of an invariance test is to confirm that the changes to the code have
not changed the behavior of the services it provides. In this kind of a situation, it is easy to
implement a test oracle procedure (explained below) that enables affordable checking of
large numbers of automatically executed test cases. Invariance testing can increase the
number of components that can be certified not to need retesting when combined with
program slicing (Berzins, 2008). Invariance testing can also be used to educe the cost of
retesting modules that need to be retested, even though their requirements remain
unchanged. This includes unchanged components that depend on other modified
components, which are identified by program slicing methods, as well as unchanged
components whose expected workload has changed (see section 3).

We can omit retesting of a service if slicing and invariance testing confirm that its
behavior is unchanged in the new release and that the following additional conditions are
met:

1. The same functional behavior is appropriate in the new release, which occurs only if
the requirements of the component are unchanged.

2. The same functional behavior is sufficient to meet the requirements only if the
requirements do not contain timing constraints. If this is not the case, the timing
constraints need to be retested because changes to hardware, systems software,
and other components in the system can all affect timing. This can be done by using
a kind of invariance testing that measures timing and by the methods described by
Qiao, Wang, Luqi, and Berzins (2006, March).

3. Constraints due to shared resources need to be rechecked, which can usually be
done via system-level stress testing. Such constraints include:

a. Sufficient main memory and disk space

=
=
==================aÉÑÉåëÉ=~Åèìáëáíáçå=áå=íê~åëáíáçå======== - 192 -
=

=

b. Sufficient I/O resources such as number of files that need to be open at the same
time, printers, sensors, actuators, or other peripherals.

c. Sufficient network bandwidth to support worst-case communications load.

d. Effective access to showed databases and web services, including both timing
and freedom from deadlocks.

4. The slicing analysis is only valid under the assumption that the machine code that is
actually running corresponds to the source code that was subjected to slicing
analysis.

5. The analysis depends on the assumption that the computer correctly translates the
source code into machine language.

The fourth assumption is frequently made without explicit acknowledgement in
theoretical studies, but it cannot be adopted without verification in serious risk analysis
because of the following plausible failure modes:

1. Memory-corrupting bugs—these include out-of-bounds write operations on arrays
and through invalid pointers. Such bugs can cause seemingly innocuous statements
to overwrite parts of the program itself at runtime, with unpredictable and potentially
catastrophic results.

2. Deliberate cyber-attacks—compromise of system security via network or
unauthorized insider access to systems can deliberately modify machine code at run-
time.

Memory-corrupting bugs are faults in the code that should be detected by test and
evaluation processes, and some types can be prevented. One class of memory-corrupting
bugs is caused by premature deallocation of dynamically created objects. Garbage-
collection algorithms are supposed to prevent this class of problems so that garbage-
collected languages such as Java and Lisp should be immune to this type of problem.
Software written in languages without garbage collection, such as C, C++ and Ada, needs
special quality-assurance methods to look for premature deallocation. There exist a variety
of tools that can be used for this task, including Valgrind (2009, April) (see the system
commands Memcheck and Ptrcheck) and Insure ++ (2009, April).

We note that in the absence of perfect computer security, which is not likely to be
attainable in the near future, no amount of test and evaluation can detect or prevent failures
of the second kind because they are not present in the system while it is being tested; they
only appear later—after attacks at run-time. We, therefore, recommend adding a design
modification that checks at run-time whether component code is still the same as it was in
the test load for all mission-critical systems that do not already have such a capability.

This can be done by packaging the machine code in blocks with secure digital
signatures and adding a process that periodically checks the signatures while the system is
running. To make this secure, the digital signatures have to be cryptographic checksums
with strong encryption so that attackers cannot modify a code module and then forge a
signature without knowledge of the secret key. The periodic checking process systematically
scans the code modules and checks their digital signatures. If it discovers a modified
module, it can repair that module and also report the problem to appropriate authorities.
Repair can be accomplished by reloading the module from an uncorruptable source such as
read-only memory or CD. Failure due to possible physical damage to media can be
mitigated by redundant copies. The repair process checks the digital signature of the new

=
=
==================aÉÑÉåëÉ=~Åèìáëáíáçå=áå=íê~åëáíáçå======== - 193 -
=

=

copy to verify its integrity and goes to alternative backup copies if there are any
discrepancies. We note that this mechanism can be used to compensate for faults due to
memory corruption regardless of whether they were caused by attacks or by faults in the
code. The state of corrupted modules will usually have to be restored to the most recent,
valid date after the corrupted code is repaired. Component designs may have to be
augmented to provide this service. There is extensive literature on how to perform rollbacks,
particularly in the context of database transitions. A discussion of this problem for object-
oriented components can be found in Vandewoude and Berbers (2005).

The mechanism proposed above is similar to a scheme used by a telephone
company to keep its software operational, despite the presence of memory-corrupting bugs,
which were known to exist but whose source could not be located. This technology has
been proven effective in practice and has been used for decades.

The mechanism can also repair faults due to corruption of data if the scanning
process understands the data structures and has code to check the invariant constraints
associated with them. This can be incorporated into the architecture via a standard interface
that every data type must implement for a service that checks all associated data constraints
and repairs them if needed.

Technology upgrades typically move to new hardware, which implies the use of new
compilers and new versions of the operating system. Presumably, these underlying services
are reliable, but, if we are to retest only a subset of the components in the new release,
these assumptions need to be verified. This can be done using invariance testing, as
explained by Berzins (2008). The correct operation of the new version of the compiler can
be checked by combining invariance testing with the approach to testing translators
described in Berzins, Auguston, and Luqi (2001, December).

Retesting Unchanged Components under New Load Conditions
The previous section discusses situations in which the following conditions hold:

1. The code of the component is unchanged.

2. The requirements and specifications of the component are unchanged.

3. The expected workload of the component is unchanged.

This section examines what should be done if the first two conditions are met, but the
third one is not: the code and requirements of a component are unchanged, but the
expected workload is different. This situation is expected when a component is reused in a
different context. Such situations will be common when one of the stated objectives of open
architectures is achieved: extensive reuse of common components across platforms.

In these cases, some retesting is necessary. We would like to do this efficiently by
reusing previous test results and focusing additional testing effort on the system behavior
that will be exercised more in the new workload than it was in the previous ones. We,
therefore, seek a systematic method to generate new test cases that characterize situations
expected in the new deployment context that were not expected in the previous deployment
contexts. This informal idea can be made precise in the context of automated statistical
testing (Berzins, 2008).

Automated statistical testing is characterized by the following properties:

=
=
==================aÉÑÉåëÉ=~Åèìáëáíáçå=áå=íê~åëáíáçå======== - 194 -
=

=

1. Test cases are automatically generated by random sampling from an operational
profile. An operational profile is a probability distribution that represents the relative
frequency of different input values to the system under test in its expected execution
environment.

2. Pass/fail decisions for individual test cases are automated and done by a single test
oracle procedure that applies to all possible inputs to the service or system under
test.

3. If the generated set of test cases runs without detecting any failures, a simple
formula gives a lower bound on the mean number of executions with a
corresponding statistical confidence level.

The significance of the first two conditions is economic: after the fixed initial cost of
implementing the operational profile and the test oracle, the marginal cost of running an
additional test case is very small. This is because there is no additional human effort
associated with additional test cases; only additional computer resources are needed to run
more test cases, and computer time costs much less than human effort.

The consequence is that very large numbers of test cases can be run economically,
making it affordable to collect sample sets large enough to provide high statistical
confidence levels in the results. Methods for determining the sample size needed to support
conclusions of the form “the mean number of executions between failures is at least N with
confidence (1- (1/N)” can be found in Berzins (2008). The significance of this is that it can
enable practical testing to specified risk-tolerance levels, rather than testing until budget
runs out. The latter does not provide high confidence in system reliability, although it occurs
commonly in current practices.

Figure 1 shows an example of the situation described above. The distribution g1
represents the operational profile for the initial deployment of a hypothetical reusable
component and g2 represents the operational profile characterizing a new environment in
which the component is to be reused. Note that a wider range of input values is expected in
the new environment. In this example, g1 and g2 are normal distributions; g1 has a standard
deviation of 1.0, and g2 has a standard deviation of 2.0.

=
=
==================aÉÑÉåëÉ=~Åèìáëáíáçå=áå=íê~åëáíáçå======== - 195 -
=

=

Figure 1. Operational Profiles for Two Different Deployment Environments

Figure 2. The Derived Testing Profile

Figure 2 shows the profile difference for incremental testing that is derived from the
distributions in Figure 1 and the resulting testing profile under the assumption that the
number of test cases needed to reach the reliability goals associated with both the previous
and the new execution environment are the same.

The profile difference is zero in the region where g1 > g2, and it is equal to the
difference g2 – g1 everywhere else. The rationale for these choices is the following:

=
=
==================aÉÑÉåëÉ=~Åèìáëáíáçå=áå=íê~åëáíáçå======== - 196 -
=

=

The region where g1 > g2 has already been adequately tested since the expected
number of samples from this region that were checked during prior testing using the profile
g1 exceed the expected number of samples from the same region that would be required in
testing under the execution profile g2, characterizing the new deployment environment.
Therefore, we can avoid this region in the second round of testing, which is accomplished by
setting the testing profile to zero in this region.

The remaining region needs more test cases for adequate coverage. If we consider
an arbitrary slice of this region, we find that the area under g1 in this slice represents the
expected number of test cases that were run in the previous round of testing governed by
the profile g1. The area under g2 in the same slice represents the expected number of test
cases from the slice that need to be run in the second round of testing. The total area under
the profile difference represents the number of test cases needed for the second round of
testing as a fraction of the number of test cases required in the first round of testing. In the
example, this fraction is calculated to be .552. The testing profile is proportional to the profile
difference, which must be normalized by dividing it by the probability mass under the curve
to make all of the probabilities add up to 1.

The more general case—in which the reliability goals in the two execution
environments differ—has a similar rationale, but the two distributions have to be scaled to
account for the differences in the number of test cases needed in each test.

Let N1 be the number of test cases that were needed from profile p1 for the first
deployment environment and N2 be the number of cases from a different profile p2, needed
for the second environment. Then, in the general case, the profile difference is zero where
N1*p1 > N2*p2 and is equal to (N2*p2 – p1* N1)/(N1 +N2) elsewhere.

The testing profile is again the normalized profile difference, obtained by dividing it
by the area under the profile difference curve.

We are currently investigating effective methods for modeling operational profiles
and for deriving model parameters from historical measurements of actual system loads.
Such measurements can come from instrumenting systems to collect data during training
exercises or actual missions.

The inputs to the software module must be analyzed to determine dependencies
among them. It is also necessary to look for dependencies between the interfaces and other
external environmental factors within the context of the operational profile and testing goals.
If dependencies exist, they should be characterized.

Once the inputs and the relationship(s) among them are known, the next step is to
estimate or specify the distributions that characterize the probabilistic behavior of the inputs.
If there are dependencies, the notion of conditional distributions will be considered as a way
to handle them. There also may be multiple possible distributions for each input, depending
on the state of the environment. This also applies if the goals can vary from testing the
normal range of inputs to testing extreme cases, which may be necessary for checking
boundary conditions and checking the robustness of the component with respect to
unplanned contingencies.

=
=
==================aÉÑÉåëÉ=~Åèìáëáíáçå=áå=íê~åëáíáçå======== - 197 -
=

=

A histogram can be used to represent the new data resulting from the measurements
to provide a visual check of the observations. However, it is advisable to fit a distribution
based on a theoretical model of the expected distributions for the following reasons:

1. Smoothing—the histogram will show irregularities due to granularity of the random
sampling in the measurements. These are not physically significant and are most
effectively mitigated by finding the best fit to a smooth curve that interpolates
between the samples and smoothes out the gaps.

2. Extrapolation—realistic probability distributions do not cut off suddenly but rather
gradually decrease with long tails. Such tails are impossible to accurately estimate
based solely on measured data because the number of observed samples is often
too small to provide an accurate measurement near the extremes of the expected
range of values. If we use the histogram as measured, it is likely that we will set the
probability distribution to zero in places where it is actually small, but nonzero. Since
this will result in tests that do not cover the full range of possible parameter values,
we propose to use a theoretical model in this region and to do the extrapolation by
matching the standard deviation of the actual measurements to the standard
deviation of the theoretical model. This will smoothly extrapolate the tails out to or
beyond the real limits of the input value range. Details about how to choose an
appropriate theoretical model for this purpose are still under investigation.

We are also planning to investigate the effectiveness of Bayesian methods for
estimating the distributions based on the actual data. This approach will also need a
theoretical model of the probability distribution function, which will be used as the prior
distribution.

Figure 3. A Stress-testing Profile, s(x), Compared to an Operational Profile, g(x)

The methods outlined above should provide a systematic way to deal with the
“known unknowns.” However, military environments are characterized by uncertainty and
surprises. To hedge against the possibility of “unknown unknowns,” we recommend running
additional tests on components to be reused in new environments with a “stress-testing
profile” that purposely exaggerates the range of expected input values. This kind of stress
testing is difficult to put on a scientific basis because we are trying to hedge against

=
=
==================aÉÑÉåëÉ=~Åèìáëáíáçå=áå=íê~åëáíáçå======== - 198 -
=

=

possibilities that we have no basis for predicting. The following heuristics are proposed as
strategies to try:

1. Use a uniform distribution that extends from three to one hundred standard
deviations in all directions from the measured mean of the distribution. This is
illustrated in Figure 3. The curve g shown in blue represents the normal profile, which
is the same as the curve g1 shown in Figure 1, and the curve s represents the
stress-testing profile. The curve s has been scaled up by a factor of 10 to make it
easier to see in the figure.

2. Use a uniform distribution that covers the entire valid range of input values. This will
include completely unexpected input values.

Recalling that these strategies are intended to be used in the context of completely
automated statistical testing, in which the marginal cost of running and analyzing additional
test cases is very low, we recommend a mixed strategy that runs tests from all three of the
proposed testing profiles, each with a number of samples derived from the risk-tolerance
parameter k, specified by system stakeholders and the measured execution frequency
parameters es according to the relation Ts = (kes)log2(kes), as explained in Berzins (2008).
Ts represents the number of the test cases that are needed for testing services to the
statistical confidence level implied by the specified risk-tolerance parameter.

Relevant Previous Work
Methods for detecting memory corrupting bugs via static and dynamic program

analysis have been studied (Alzamil, 2006; 2008, November). Program slicing (Weiser,
1984, July) has been used in a wide variety of applications, including testing (Binkley, 1998;
Gupta, Harrold & Soffa, 1992; Harman & Danicic, 1995; Hierons, Harman & Danicic, 1999;
Hierons, Harman, Fox, Ouarbya & Daoudi, 2002), debugging (Agrawal, DeMillo & Spafford,
1993; Lyle & Weiser, 1987), program understanding (De Lucia, Fasolino & Munro, 1996;
Harman, Hierons, Danicic, Howroyd & Fox, 2001), reverse engineering (Canfora, Cimitile &
Munro, 1994), software maintenance (Gallagher, 1991, August; Cimitile, De Lucia & Munro,
1996; 1994), change merging (Horwitz, Prins & Reps, 1989; Berzins & Dampier, 1996), and
software metrics (Lakhotia, 1993; Bieman & Ott, 1994). More detailed surveys of previous
work on slicing can be found in Binkley and Harmon (2004).

The problem of state transfers for modules upgraded at run-time is addressed by
Vandewoude and Berbers (2005). A method for assessing the impact of timing constraints
on proposed system upgrades is described in Qiao, Wang, Luqi, and Berzins (2006, March).

Conclusion
Program slicing and invariance testing are methods that can be used to identify

cases in which it is safe not to retest an unchanged component. These methods need to be
augmented with other means for establishing the absence of other possible failure modes
such as the possibility of memory-corrupting bugs and timing faults. This paper identifies
ways to solve these issues.

When components are reused in environments with substantially different load
characteristics than previous deployment environments, it is important to test the

=
=
==================aÉÑÉåëÉ=~Åèìáëáíáçå=áå=íê~åëáíáçå======== - 199 -
=

=

components under the new modes of operation. This paper presents systematic and
efficient ways to accomplish that.

Further work is needed to explore ways to address other possible failure models,
including possible interference due to shared system resources, and to address the longer-
term goal of eventually eliminating the need for repeating integration testing after every
system change. Specifically, more work is needed on methods for certifying the reliability of
architectures independently from the components that they contain and for certifying the
conformance of an implementation to a given architecture in order to attain the long-term
goals outlined in the introduction.

List of References
Agrawal, H., DeMillo, R., & Spafford, E. (1993). Debugging with dynamic slicing and backtracking.

Software Practice and Experience, 23(6), 589–616.

Alzamil, Z. (2006). Application of computational redundancy in dangling pointers detection. In
Proceedings of the IEEE International Conference on Software Engineering Advances
(ICSEA 2006) (pp. 30–36). Tahiti: IEEE.

Alzamil, Z. (2008, November). Application of redundant computation in program debugging. Journal
of Systems and Software, 81(11), 2024-2033.

Berzins, V., Auguston, M., & Luqi. (2001, December). Generating test cases for system generators. In
Proceedings of the Conference on Dynamic and Complex System Architecture. Brisbane,
Australia.

Berzins, V., & Dampier, D. (1996). Software merge: Combining changes to decompositions. Journal
of Systems Integration, 6(1-2, special issue on Computer-aided Prototyping), 135-150.

Berzins, V., Rodriguez, M., & Wessman, M. (2007). Putting teeth into open architectures:
Infrastructure for reducing the need for retesting. In Proceedings of the Fourth Annual
Acquisition Research Symposium (pp. 285-311). Monterey, CA: Naval Postgraduate School.

Berzins, V. (2008). Which unchanged components to retest after a technology upgrade. In
Proceedings of the Fifth Annual Acquisition Research Symposium (pp. 142-153). Monterey,
CA: Naval Postgraduate School.

Bieman, J., & Ott, L. (1994). Measuring functional cohesion. IEEE Transactions on Software
Engineering, 20(8), 644–657.

Binkley, D. (1998). The application of program slicing to regression testing. In M. Harman & K.
Gallagher (Eds.), Program Slicing, Information and Software Technology, 40(11-12, special
issue), 583-594. San Diego, CA: Elsevier.

Binkley, D.W., & Harman, M. (2004). A survey of empirical results on program slicing. In M.V.
Zelkowitz (Ed.), Advances in Computers (pp. 105–178). (Vol. 62). San Diego, CA: Elsevier.

Canfora, G., Cimitile, A., & Munro, M. (1994). RE2: Reverse engineering and reuse re-engineering.
Journal of Software Maintenance: Research and Practice, 6(2), 53–72.

Cimitile, A., De Lucia, A., & Munro, M. (1996). A specification driven slicing process for identifying
reusable functions. Software Maintenance: Research and Practice, 8(3), 145–178.

De Lucia, A., Fasolino, A., & Munro, M. (1996). Understanding function behaviours through program
slicing. In Proceedings of the 4th IEEE Workshop on Program Comprehension (pp. 9–18).
Los Alamitos, CA: IEEE Computer Society Press.

Gallagher, K. (1991, August). Using program slicing in software maintenance. IEEE Transactions on
Software Engineering, 17(8), 751-760.

=
=
==================aÉÑÉåëÉ=~Åèìáëáíáçå=áå=íê~åëáíáçå======== - 200 -
=

=

Gupta, R., Harrold, M., & Soffa, M. (1992). An approach to regression testing using slicing. In
Proceedings of the IEEE Conference on Software Maintenance (pp. 299–308). Los Alamitos,
CA: IEEE Computer Society Press.

Harman, M., & Danicic, S. (1995). Using program slicing to simplify testing. Software Testing,
Verification and Reliability, 5(3), 143–162.

Harman, M., Hierons, R., Danicic, S., Howroyd J., & Fox, C. (2001). Pre/post conditioned slicing. In
Proceedings of the IEEE International Conference on Software Maintenance (ICSM ’01) (pp.
138–147). Los Alamitos, CA: IEEE Computer Society Press.

Hierons, R., Harman, M., & Danicic, S. (1999). Using program slicing to assist in the detection of
equivalent mutants. Software Testing, Verification and Reliability, 9(4), 233–262.

Hierons, R., Harman, M., Fox, C., Ouarbya, L., & Daoudi, M. (2002). Conditioned slicing supports
partition testing. Software Testing, Verification and Reliability, 12(1), 23–28.

Horwitz, S., Prins, J., & Reps, T. (1989). Integrating non-interfering versions of programs. ACM
Transactions on Programming Languages and Systems, 11(3), 345–387.

Howden, W. (1987). Functional program testing and analysis. New York: McGraw-Hill.

Insure++. (2009). Parasoft. Retrieved April 2009, from
http://www.parasoft.com/jsp/products/home.jsp?product=Insure

Jézéquel, J.-M., & Meyer, B. (1997, January). Design by contract: The lessons of Ariane. Computer,
30(2), 129-130.

Lakhotia, A. (1993). Rule-based approach to computing module cohesion. In Proceedings of the 15th
Conference on Software Engineering (ICSE ‘93) (pp. 34–44). Los Alamitos, CA: ACM/IEEE.

Lammel, R. (2008, January). Google’s map reduce programming model—Revisited. Science of
Computer Programming, 70(1), 1-30.

Lyle, J., & Weiser, M. (1987). Automatic program bug location by program slicing. In Proceedings of
the 2nd International Conference on Computers and Applications (pp. 877–882). Los
Alamitos, CA: IEEE Computer Society Press.

Marshall, M. (1992). Fatal error: How patriot overlooked a scud. Science, 255(5050), 1347.

Qiao, Y., Wang, H., Luqi, & Berzins, V. (2006, March). An admission control method for dynamic
software reconfiguration in complex embedded systems. International Journal of Computers
and Their Applications, 13(1), 28-38.

Valgrind. (2009). Valgrind’s tool suite. Retrieved April 2009, from http://valgrind.org/info/tools.html

Vandewoude, Y., & Berbers, Y. (2005). Component state mapping for runtime evolution. In
Proceedings of the 2005 International Conference on Programming Languages and
Compilers (pp. 230-236). Las Vegas, NV: PLC.

Weiser, M. (1984, July). Program slicing. IEEE Transactions of Software Engineering, 10(4), 352-357.

=
==================aÉÑÉåëÉ=^Åèìáëáíáçå=áå=qê~åëáíáçå=
=

=

2003 - 2009 Sponsored Research Topics

Acquisition Management
 Acquiring Combat Capability via Public-Private Partnerships (PPPs)

 BCA: Contractor vs. Organic Growth

 Defense Industry Consolidation

 EU-US Defense Industrial Relationships

 Knowledge Value Added (KVA) + Real Options (RO) Applied to Shipyard
Planning Processes

 Managing Services Supply Chain

 MOSA Contracting Implications

 Portfolio Optimization via KVA + RO

 Private Military Sector

 Software Requirements for OA

 Spiral Development

 Strategy for Defense Acquisition Research

 The Software, Hardware Asset Reuse Enterprise (SHARE) repository

Contract Management
 Commodity Sourcing Strategies

 Contracting Government Procurement Functions

 Contractors in 21st Century Combat Zone

 Joint Contingency Contracting

 Model for Optimizing Contingency Contracting Planning and Execution

 Navy Contract Writing Guide

 Past Performance in Source Selection

 Strategic Contingency Contracting

 Transforming DoD Contract Closeout

 USAF Energy Savings Performance Contracts

 USAF IT Commodity Council

 USMC Contingency Contracting

Financial Management
 Acquisitions via leasing: MPS case

 Budget Scoring

 Budgeting for Capabilities-based Planning

 Capital Budgeting for DoD

=
==================aÉÑÉåëÉ=^Åèìáëáíáçå=áå=qê~åëáíáçå=
=

=

 Energy Saving Contracts/DoD Mobile Assets

 Financing DoD Budget via PPPs

 Lessons from Private Sector Capital Budgeting for DoD Acquisition Budgeting
Reform

 PPPs and Government Financing

 ROI of Information Warfare Systems

 Special Termination Liability in MDAPs

 Strategic Sourcing

 Transaction Cost Economics (TCE) to Improve Cost Estimates

Human Resources
 Indefinite Reenlistment

 Individual Augmentation

 Learning Management Systems

 Moral Conduct Waivers and First-tem Attrition

 Retention

 The Navy’s Selective Reenlistment Bonus (SRB) Management System

 Tuition Assistance

Logistics Management
 Analysis of LAV Depot Maintenance

 Army LOG MOD

 ASDS Product Support Analysis

 Cold-chain Logistics

 Contractors Supporting Military Operations

 Diffusion/Variability on Vendor Performance Evaluation

 Evolutionary Acquisition

 Lean Six Sigma to Reduce Costs and Improve Readiness

 Naval Aviation Maintenance and Process Improvement (2)

 Optimizing CIWS Lifecycle Support (LCS)

 Outsourcing the Pearl Harbor MK-48 Intermediate Maintenance Activity

 Pallet Management System

 PBL (4)

 Privatization-NOSL/NAWCI

 RFID (6)

 Risk Analysis for Performance-based Logistics

 R-TOC Aegis Microwave Power Tubes

=
==================aÉÑÉåëÉ=^Åèìáëáíáçå=áå=qê~åëáíáçå=
=

=

 Sense-and-Respond Logistics Network

 Strategic Sourcing

Program Management
 Building Collaborative Capacity

 Business Process Reengineering (BPR) for LCS Mission Module Acquisition

 Collaborative IT Tools Leveraging Competence

 Contractor vs. Organic Support

 Knowledge, Responsibilities and Decision Rights in MDAPs

 KVA Applied to Aegis and SSDS

 Managing the Service Supply Chain

 Measuring Uncertainty in Earned Value

 Organizational Modeling and Simulation

 Public-Private Partnership

 Terminating Your Own Program

 Utilizing Collaborative and Three-dimensional Imaging Technology

A complete listing and electronic copies of published research are available on our website:
www.acquisitionresearch.org

=
=
==================aÉÑÉåëÉ=^Åèìáëáíáçå=áå=qê~åëáíáçå
=

=

THIS PAGE INTENTIONALLY LEFT BLANK

^Åèìáëáíáçå=êÉëÉ~êÅÜ=mêçÖê~ã=
dê~Çì~íÉ=ëÅÜççä=çÑ=ÄìëáåÉëë=C=éìÄäáÅ=éçäáÅó=
k~î~ä=éçëíÖê~Çì~íÉ=ëÅÜççä=
RRR=avbo=ol^aI=fkdboplii=e^ii=
jlkqbobvI=`^ifclokf^=VPVQP=

www.acquisitionresearch.org

1

How to Check If It Is Safe Not to Retest
a Component

Dr. Valdis Berzins, berzins@nps.edu, 831-656-2610

Paul Dailey, prdailey@nps.edu

Software Engineering, Naval Postgraduate School

2

Context
• Expected long term benefits from Navy Open Architecture

– Business benefits:
• Flexible acquisition strategies and contracts that enable software

reuse, easy systems upgrade, and shared data throughout the Navy
– Technical benefits:

• Modular open architectures facilitate system adaptation, portability,
interoperability, upgrade-ability and long-term supportability

• The Achilles Heel - Test and Evaluation
– Current practices require retesting unchanged components after

each system upgrade, typically every two years
– Substantial budget and schedule are currently devoted to retesting
– New technology, processes, and policies are needed to safely

reduce this effort and free resources for testing new functionality
• Improvements sought by our research

– Less time for testing, quicker response to changes
– Improved reliability on larger scales without increasing testing cost

3

Scientific Roadmap - Objectives
• Safely reduce testing cost

– Reduce the need for re-testing
– Eventually eliminate integration test after every reconfiguration
– Reduce cost of future system failures due to missed errors

• Make testing more effective by augmenting it with other quality
assurance methods

– Develop conceptually new and different methods to achieve dependability in
Navy OA systems in presence of reuse, reconfiguration, changes and
unpredictable environments

• Enable Persistent Open Architectures
– The architecture should not have to change or be retested every time the

system configuration changes
• Methods that cover many configurations with one analysis
• Avoid redundant retesting of previously existing modules and architectures

4

Scientific Roadmap - Approach
• Refine the open architecture concept to support system

development and testing with interchangeable software parts
that conform to persistent system standards
– Requirements that are stable across all configurations
– Both system-wide capabilities and subsystem/connection properties

• A Dependable Open Architecture should include:
– Not only components and connections but also constraints

expressing the most important dependability properties
– Links to requirements, capabilities and standards
– Variable parameters – KPP’s / features / Load characteristics
– Components and connectors should be swappable within

compatibility groups defined by testable dependability properties

• Apply testing and systematic quality assurance at the
architectural level as well as the system implementation level

5

Long Term Solution Approach
• The proposed QA method is globally decomposed into five

major steps:

See 2007 Acquisition Symposium Paper for details

S1 S2

C1 C2

R

S12

S1

R

S2

S12

C1

C2

2 2

3

3

3

4

Requirements

Standard for Component 1

Standard for Component 2

Standard for connection between
components 1 and 2

Component 1

Component 2

1

1

1

2
3
4

Test Components vs. Standards

Verify Architecture vs.
Requirements & Standards
Ensure non

-

interference among
components

1 Formulate dependability contracts

5 Monitor environment assumptions

5

6 Monitor changes to executables

6

6

Short Term Problems
• Current Navy combat system test procedures require an

integration test for every:
– System configuration (platform)
– Changed system configuration (upgrade)

• Open Architectures support frequent changes to configurations
– Retesting is expensive and time consuming

• Open Architectures support component reuse across platforms
– Component workloads subject to change
– New workloads expose new faults

7

Recent Work - Approaches

• Reduce testing cost
– Methods to identify components that do not need to be retested
– Methods to limit scope of retesting when it is needed
– Methods to completely automate testing and analysis

• Maintain safety
– Program slicing to confirm unchanged behavior of unchanged code
– Automated testing to confirm unchanged behavior of modified code
– Operational profiles to efficiently test reusable components in

different environments.

When Retesting a Service is Necessary

• When its slice or behavior has changed

• When requirements have changed
– New functionality needs to be tested
– Test all affected components

• When the range of expected operating conditions has expanded
– Even if there was no other change, new test scenarios are needed
– Indicated by a modified operational profile

• When computing speeds or timing constraints have changed
– Changed hardware processing rates can adversely affect

scheduling algorithms and cause missed deadlines

8

9

Test Avoidance Example

Program Slicing
• Program slicing is a kind of automated dependency analysis

– Same slice implies same behavior
– Can be computed for large programs
– Depends on the source code, language specific

• Slicing tools must handle arrays and objects correctly
– Need to certify the tools to be used

• Unchanged component behavior depends on continued
correspondence of machine code to source code

• Must certify absence of memory corrupting bugs
– Tools exist: Valgrind, Insure++, Coverity,…

• Must ensure absence of runtime modifications due to cyber attacks
– Cannot be detected by testing because modifications are not present in test

loads
– Need runtime checking, can be done using cryptographic signatures

10

How Much Invariance Testing
is Enough?

• How many tests are needed to reach high confidence?
– Stakeholder defines the acceptable risk threshold k

• The expected frequency of behavioral differences in a given service is
at most one in k missions.

• Number of test cases is computed for each service in the
middleware interface to the operating system

– It is determined by the following formula
Ts = (k es) log2 (k es)

• Where s is a service, es is the mean number of executions of s per
mission, k reflects stakeholder’s tolerance for risk as above

• Test cases are independently drawn from the probability
distribution characterizing the mission, a.k.a. operational profile

– Statistical confidence level is 1 – 1/(k es)
• Probability of making a false positive conclusion matches the

stakeholder’s risk tolerance

11

Current Policy for Mishap Risk Assessment

12

P: Probability of occurrence in the lifetime of an individual system, ranges taken from MIL_STD-882D

Testing Efforts vs. Acceptable Risk

13

Ns = k es C Ts
103 .999 1.0 x 104

104 .9999 1.3 x 105

105 .99999 1.7 x 106

106 .999999 2.0 x 107

107 .9999999 2.3 x 108

108 .99999999 2.7 x 109

109 .999999999 3.0 x 1010

Number of test
cases required for
different levels of

risk tolerance

Number of Test Cases

C
os

t

Automated Statistical TestingM
an

ua
l T

es
tin

g

Semi- Automated Testing
Testing cost

characteristics

See paper in 2008
acquisition conference

for details

Why Do We Need Operational Profiles

• Can be used to automate selection of test cases

• Reliability of a system is determined by the operational profile
– Real systems have bugs, specification errors, requirement omissions, etc.
– System reliability varies from 0 (always fails) to 1 (never fails) in different environments

• Operational profiles have proved useful in practice
– Example: reliability testing of telephone-switching software

• It takes human effort to produce an operational profile
– Measure the frequency distributions of executions and associated input parameters for

each service
• Can be collected on- or off- line

14

Benefits of Operational Profiles

• Reduces testing resources
– Automatic generation of test cases
– Efficient selection of test cases
– Finds most frequent failures first
– Supports reuse of previous test results

• Good software reliability checking
– Statistically represents external environment
– Suited for software reuse testing

• Ideal for Open Architecture applications by
enabling automated statistical testing

15

Example of Using an Operational
Profile for Reuse Testing

• Currently fielded software has been tested
with N samples from operational profile g1(x)
and functions reliably in that environment

• Software is being reused and placed in new
environment represented by operational
profile g2(x)

• What is the minimum amount of testing
required to ensure operability and reliability in
the new environment?

16

Operational Profile for Two Different
Environments

17

Example of Using an Operational
Profile for Reuse Testing (cont)

• Need additional testing in regions more likely
in the new profile than in the old one

• The profile difference defines the needed test
cases
– Pd(x) = if g2(x) > g1(x) then g2(x) – g1(x) else 0
– Must be scaled if reliability goals differ in the two

environments
– Must be normalized to become a probability

distribution

18

Derived Testing Profile

19

Example of Using an Operational
Profile for Reuse Testing (cont)

• How to stress test the software?
– Safety or operationally critical software
– Extended boundary condition testing
– Checks for “unknown unknowns”, prevents

surprises from the new environment
• Rough guideline: test out to 100 standard

deviations

20

Stress Testing Profile

21

*10

Methods for modeling operational
profiles

• Identify all environment inputs and their
dependencies
– Possible use of conditional distributions

• Estimate distribution for each input
– Mathematical analysis and use of histogram “bins”

when raw historical data is available
– Smoothing, interpolation & extrapolation to tails

where raw data is missing

22

Methods for modeling operational
profiles (cont)

• Use of Bayesian methods for estimating
distributions of actual data

• Implementing Stress Test profiles
– When not enough information is known about

current or past operational environments
– Always for safety critical software

• Calculate statistical confidence levels in the
profile model based on sample size

23

24

Acquisition Process Implications

• Requirements analysis needs to span the entire problem
domain and system life, not just individual versions of the
System of Systems
– Same architecture must support all future versions and all platforms
– Planned control of variation via ranges for parameters/features

• Re-orient development processes toward Design-to-Tolerances
– Currently oriented towards Design-to-Fit, Test-to-Fit

• The architecture as a whole needs authority / priority
– Responsible organization
– Global system standards authority
– Manage accountability for subsystems
– Empower via change control, acceptance testing, budget control,

contracts with incremental commitment

25

Acquisition Process Implications

• Domain requirements/Architecture development / QA need
substantial time/resources/technology development
– Must be included in the plan from the start
– More detailed/precise standards and analysis needed
– Shift from current requirements to likely requirements trajectories

• New QA technologies needed
– Some known in labs but not used currently
– Tailoring/improvement may be needed for practical use
– Some areas need new methods to reach long term goals
– Will need tech transfer, training, and process changes for best

practical impact

Short Term Recommendations

• Testing profiles and statistical test results should be attached to
reusable components in repositories.

• Operational Profiles should be measured based on observed
data.

• Validity of pointers and storage recycling should be checked by
tools especially if components not retested based on slicing.

• Absence of code modification should be checked at runtime via
cryptographic signatures.

• Automated invariance testing should be applied to components
whose specifications are unchanged but hardware or code
affecting behavior has changed.

26

Short Term Recommendations (cont)

• Statistical testing should be performed for safety-
critical and mission critical functions.

• Need uniform guidance for mission-critical reliability,
analogous to MIL-STD-882D for system safety.

• Effectiveness and safety of slicing criteria for avoiding
retesting should be validated with a case study/demo.

• Reusable components should monitor assumptions
about their operating environment at runtime.

27

28

Conclusions

• The slicing and automated testing approach has a
potential to reduce testing duration and costs

– More research is recommended to substantiate the applicability of our
approach to DoD systems

– Experimental evaluation of slicing and invariance testing methods is
needed

• Automated testing techniques can alleviate concerns
about system risks due to technology innovations

• Measurement and analysis of the operational profiles
of reusable components can be used to support
analysis of changes in the operating environments

– Hence determining whether additional testing is necessary

29

Backup Slides

Approach: Program Slicing [Weiser 84]

• What is a slice?
– A self-contained subset of a program

• Contains all of the code that affects its observable behavior
– Determined by an observation point

• Example: behavior of a single service
– Contains only the relevant parts

• Why do slices matter?
– Behavior invariance property:

• If a service has the same slice in two different versions of a program, it
has the same behavior in both versions

– If two slices are the same, the service does not have to be retested
– Slices can be computed on a large scale

• Involves dependency tracing, data flow analysis, and control flow
analysis

30

Invariance Testing Extends Program Slicing
• Used to check that behavior of modified code remains the same

– Candidates: Open Architectures and higher level middleware
• Enables effective slicing cutoff boundaries

– Example: operating system interface
– Example: upgrade from a deprecated interface
– Example: baseline specific interfaces used by common

components
• Enhances slicing to identify more components that do not need

retesting
• Relies on a statistical inference with a very high confidence level

– Needs large numbers of test cases
– Economically feasible because this kind of test and analysis can be

completely automated
• Test cases - generate inputs by random sampling
• Data analysis - compare outputs from two different software versions

31

32

Related Work
• Navy systems are designed with open architecture in mind

– Hence encapsulating all system calls

• Program Slicing has been used in a wide variety of applications:
testing, debugging, program understanding, reverse
engineering, software maintenance, change merging, software
metrics.

– See paper for extended list of citations.

• Automate testing has been used to automatically generate open
sets of test cases based on random samplings from
implementations of operational profile distributions [Berzins and Chaki
2002]

• Prior work on quality assurance for flexible systems at the level:
– Of requirements [Luqi, Zhang, Berzins & Qiao 2004] [Luqi & Lange 2006]

– Of architectures [Berzins & Luqi 2006]][Luqi & Zhang 2006]

